HAMON, D. P. G. & RICHARDS, K. R. (1973). Aust. J. Chem. 36, 2243–2259.

JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.

KLEINFELTER, D. C. & SCHLEYER, P. VON R. (1973). Org. Synth. 5, 852–855.
 PEET, N. P. & CARGILL, R. L. (1973). J. Org. Chem. 38, 4281–

4285.

able; a clear colorless crystal with dimensions $0.10 \times$

Acta Cryst. (1991). C47, 206–209

endo-endo Diels-Alder Diadduct of 5,5-Dimethoxy-1,2,3,4-tetrachloro-1,3-cyclopentadiene with 1,5-Cyclooctadiene, (1), and the Dechlorinated Diels-Alder Diadduct, (2)

BY J. GABRIEL GARCIA, FRANK R. FRONCZEK AND MARK L. MCLAUGHLIN*

Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA

(Received 2 April 1990; accepted 18 June 1990)

Abstract. 1,6,7,8,9,14,15,16-Octachloro-17,17,18,18tetramethoxypentacyclo[12.2.1.1^{6,9}.0^{2,13}.0^{5,10}]octadeca-7.15-diene (1), $C_{22}H_{24}Cl_8O_4$, $M_r = 636.1$, triclinic, $P\overline{1}$, a = 7.3110(7), b = 7.9195(5), c =12.2113 (10) Å, $\alpha = 84.490$ (7), $\beta = 86.064$ (7), $\gamma = 71.490$ (8)°, V = 666.8 (1) Å³, Z = 1, $D_x = 1$ 71.490 (8)°, 1.584 g cm⁻³, $\lambda(\mathrm{Cu} \ K\alpha) = 1.54184 \ \mathrm{\AA},$ $\mu =$ 81.7 cm^{-1} , F(000) = 324, T = 296 K, R = 0.043 for2259 observations with $I > 3\sigma(I)$ (of 2659 unique data). 17,17,18,18-Tetramethoxypentacyclo- $[12.2.1.1^{6,9}.0^{2,13}.0^{5,10}]$ octadeca-7,15-diene (2), C₂₂- $H_{32}O_4$, $M_r = 360.5$, triclinic, $P\bar{1}$, a = 6.5121 (7), b =8.5391 (8), c = 9.4741 (4) Å, $\alpha = 67.293$ (6), $\beta = 76.580$ (6), $\gamma = 88.202$ (8)°, V = 471.7 (1) Å³, Z = 1, $D_x = 1.269 \text{ g cm}^{-3}$, $\lambda(\text{Cu } K\alpha) = 1.54184 \text{ Å}$, $\mu =$ 6.45 cm^{-1} , F(000) = 196, T = 296 K, R = 0.036 for1815 observations with $I > 3\sigma(I)$ (of 1942 unique data). The endo-endo isomer (1) of the four possible Diels-Alder diadducts is preferred at lower temperature. Both molecules lie on inversion centers, thus the cyclooctane ring in both structures adopts the chair conformation. The near-zero torsion angles of the chair occur at the ring-fusion bonds, and have magnitudes of $1.8 (4)^{\circ}$ for the chlorinated compound (1) and $0.89 (13)^{\circ}$ for the dechlorinated compound (2). The C=C bond has a length of 1.324(3) in (1) and 1.329 (1) Å in (2).

Experimental. The title compound (1) was prepared by heating a 4:1 mixture of 5,5-dimethoxy-1,2,3,4tetrachloro-1,3-cyclopentadiene with 1,5-cyclooctadiene to 453 K and extracting the white solid with pyridine (Akhtar, Fray & Yarrow, 1968). Crystals of the *endo-endo* isomer (1), grown by slow cooling of xylenes, m.p. 629-631 K (dec.), were suit-

* Author to whom correspondence should be addressed.

0108-2701/91/010206-04\$03.00

 0.20×0.22 mm was used for data collection on an Enraf-Nonius CAD-4 diffractometer with Cu $K\alpha$ radiation and a graphite monochromator. Cell dimensions were determined from setting angles of 25 reflections having $30 > \theta > 11^\circ$. The $\omega - 2\theta$ scans were designed for $I = 25\sigma(I)$, subject to maximum scan time = 120 s, scan rates varied in the range $0.72-3.30^{\circ}$ min⁻¹. One hemisphere of data having 2 $< \theta < 75^{\circ}, 0 \le h \le 9, -9 \le k \le 9, -15 \le l \le 15$ was measured and corrected for background, Lorentz and polarization effects, decay, and absorption. Absorption corrections were based on ψ scans, with minimum relative transmission coefficient 0.574. Three standard reflections (300, 020, 003) were measured every 10 000 s, exhibiting 19, 53, and 20% intensity decline, respectively. An anisotropic decay correction was applied. The structure was solved by direct methods, refined by full-matrix least squares based upon F, using data for which I > $3\sigma(I)$, weights $w = 4F_o^2[\sigma^2(I) + (0.02F_o^2)^2]^{-1}$ using the Enraf-Nonius Structure Determination Package (Frenz & Okaya, 1980), scattering factors of Cromer & Waber (1974), and anomalous coefficients of Cromer (1974). C-atom coordinates were refined with anisotropic thermal parameters; H-atom coordinates were located by ΔF and were refined with isotropic thermal parameters. Final R = 0.043 for 2259 observed data (0.059 for all 2659 data), wR =0.059, and S = 3.303 for 203 variables. Maximum shift 0.15σ in the final cycle, max. residual density 0.30, min. $-0.48 \text{ e} \text{ Å}^{-3}$, and extinction coefficient g $= 8.4(6) \times 10^{-6}$ where the factor $(1 + gI_c)^{-1}$ was applied to F_c . A structural diagram of compound (1) is shown below while the fractional coordinates are given in Table 1. Fig. 1 is a perspective drawing showing the atom numbering for title molecule (1),

© 1991 International Union of Crystallography

and Fig. 2 shows the unit cell. Bond distances, angles, and selected torsion angles for (1) are presented in Table 2.*

The title compound (2) was prepared by heating (1) with sodium metal, at reflux, in tetrahydrofuran and tert-butyl alcohol for 36 h, followed by extraction with dichloromethane (Gassman & Marshall, 1968). Crystals of the endo-endo isomer (2), grown by slow cooling and partial evaporation of a 1:1:1 mixture of xylenes:toluene:hexane, m.p. 512-515 K, were suitable; a clear colorless crystal with dimensions $0.18 \times 0.32 \times 0.50$ mm was used for data collection on an Enraf-Nonius CAD-4 diffractometer

* Lists of H-atom coordinates and thermal parameters, bond distances and angles involving H, structure-factor amplitudes, and torsion angles, for (1) and (2) have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53297 (37 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. ORTEP drawing (Johnson, 1965) of the molecule (1), representing heavy atoms as 40% probability ellipsoids and H atoms as circles of arbitrary radius.

Fig. 2. Stereoview of the unit cell of (1).

Table 1. Coordinates and equivalent isotropic thermal parameters for (1)

$B_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_j^*a_i.a_j.$

	x	у	Z	$B_{eq}(\text{\AA}^2)$
Cl(1) -0	-2803 (1)	0.67907 (9)	0.33858 (5)	4.41 (2)
Cl(2) - 0	-5855 (1)	0.5674 (1)	0.19640 (8)	5.23 (2)
Cl(3) -0	-3811 (1)	0.1432 (1)	0.12159 (7)	4.79 (2)
Cl(4) 0	·0488 (1) -	0.02223 (9)	0.22287 (6)	4.45 (2)
O(1) 0	0928 (3)	0.3358 (3)	0.3496 (2)	4.06 (4)
O(2) - 0	-1662 (3)	0.2300 (3)	0.4057 (2)	4.35 (5)
C(1) -0	·1994 (4)	0.4906 (3)	0.2605 (2)	2.94 (5)
C(2) -0	•3564 (4)	0.4315 (3)	0.2167 (2)	3.19 (5)
C(3) -0	·2766 (4)	0.2662 (3)	0.1880 (2)	3.17 (5)
C(4) - 0	•0641 (4)	0.2117 (3)	0.2129 (2)	3.00 (5)
C(5) 0	0369 (3)	0.3176 (3)	0.1292 (2)	2.70 (5)
C(6) -0	0622 (4)	0-5156 (3)	0.1609 (2)	2.71 (5)
C(7) - 0	·0762 (4)	0.3108 (4)	0.3196 (2)	3.34 (6)
C(8) 0	·1651 (4)	0.3469 (3)	- 0.0710 (2)	2.95 (5)
C(9) 0	0280 (4)	0.2790 (3)	0.0100 (2)	2.90 (5)
C(10) 0	-2422 (5)	0.1821 (5)	0-3918 (3)	5.63 (9)
C(11) -0	-2015 (6)	0.3106 (5)	0.5074 (3)	5.98 (9)

Table 2. Bond distances (Å), angles (°), and selected torsion angles (°) for (1)

$\begin{array}{c} Cl(1) - C(1) \\ Cl(2) - C(2) \\ Cl(3) - C(3) \\ Cl(4) - C(4) \\ 0(1) - C(7) \\ 0(1) - C(10) \\ 0(2) - C(7) \\ 0(2) - C(7) \\ 0(2) - C(11) \\ C(1) - C(2) \\ C(1) - C(6) \end{array}$	1-768 (2) 1-699 (2) 1-703 (3) 1-769 (2) 1-390 (4) 1-432 (4) 1-411 (3) 1-421 (4) 1-515 (4) 1-561 (3)	$\begin{array}{c} C(1) \longrightarrow C(7) \\ C(2) \longrightarrow C(3) \\ C(3) \longrightarrow C(4) \\ C(4) \longrightarrow C(5) \\ C(4) \longrightarrow C(7) \\ C(5) \longrightarrow C(6) \\ C(5) \longrightarrow C(6) \\ C(6) \longrightarrow C(8) \\ C(8) \longrightarrow C(9) \end{array}$	1-561 (3) 1-324 (3) 1-519 (4) 1-555 (4) 1-568 (4) 1-579 (3) 1-525 (3) 1-523 (3) 1-542 (4)
C(1) $C(0)$	1 501 (5)		
C(7) - O(1) - C(10)	117.7 (3)	C(3) - C(4) - C(5)	108.8 (2)
C(7) - O(2) - C(11)	116.7 (3)	C(3) - C(4) - C(7)	100.3(2)
Cl(1) - C(1) - C(2)	115.6 (2)	C(5) - C(4) - C(7)	101.4 (2)
Cl(1) - C(1) - C(6)	112.6 (2)	C(4) - C(5) - C(6)	101.9 (2)
Cl(1) - C(1) - C(7)	117.4 (2)	C(4) - C(5) - C(9)	113-3 (2)
C(2) - C(1) - C(6)	107.5 (2)	C(6)-C(5)-C(9)	117.6 (2)
C(2) - C(1) - C(7)	100.2 (2)	C(1) - C(6) - C(5)	102.2 (2)
C(6)—C(1)—C(7)	101.9 (2)	C(1) - C(6) - C(8)	113.2 (2)
Cl(2) - C(2) - C(1)	124.2 (2)	C(5)-C(6)-C(8)	117.6 (2)
Cl(2) - C(2) - C(3)	127.8 (2)	O(1)—C(7)—O(2)	113-4 (2)
C(1) - C(2) - C(3)	107.7 (2)	O(1) - C(7) - C(1)	107.2 (2)
Cl(3) - C(3) - C(2)	127.5 (2)	O(1) - C(7) - C(4)	116.9 (2)
Cl(3) - C(3) - C(4)	125.1 (2)	O(2) - C(7) - C(1)	118.1 (2)
C(2) - C(3) - C(4)	107.1 (3)	O(2) - C(7) - C(4)	108.9 (2)
Cl(4) - C(4) - C(3)	113.3 (2)	C(1) - C(7) - C(4)	90.9 (2)
Cl(4) - C(4) - C(5)	114.6 (2)	C(6) - C(8) - C(9)	113.9 (2)
Cl(4) - C(4) - C(7)	117.0 (2)	C(5)—C(9)—C(8)	114-1 (2)
C(10)O(1)C(7)O	(2) 56.5 (3)	C(11)O(2)C(7)C	D(1) 52·2 (3)
C(7)-C(1)-C(2)-C(2)	3) - 35·7 (3)	C(7)-C(1)-C(6)-C(5) 36.6 (2
C(1)-C(2)-C(3)-C(4	4) 0·3 (3)	C(7)-C(4)-C(5)-C(6) - 39.5 (2
C(4) - C(5) - C(6) - C(6)	1) 1.8 (2)	C(4)—C(5)—C(6)—C(8) - 122.7 (2
C(9) - C(5) - C(6) - C(6)	5) 1·8 (3)	C(6) - C(5) - C(9) - C(9)	8 [°]) 74·8 (3
(1) - (0) - (0) - (0) - (0)	≠	- (1)(1)(1)(1)	oj – 119-0 (2

with Cu $K\alpha$ radiation and a graphite monochromator. Cell dimensions were determined from setting angles of 25 reflections having $36 > \theta > 25^{\circ}$. The ω -2 θ scans were designed for $I = 25\sigma(I)$, subject to maximum scan time = 90 s, scan rates varied from $0.61-3.30^{\circ}$ min⁻¹. A full sphere of data having $2 < \theta$ $< 75^{\circ}, -8 \le h \le 8, -10 \le k \le 10, -11 \le l \le 11$ was measured and corrected for background, Lorentz and polarization effects, and absorption. Absorption

 Table 3. Coordinates and equivalent isotropic thermal parameters for (2)

$\boldsymbol{B}_{\rm eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} \boldsymbol{a}_i^* \boldsymbol{a}_j^* \boldsymbol{a}_i \cdot \boldsymbol{a}_j.$				
	x	у	z	$B_{\rm eq}({\rm \AA}^2)$
O(1)	0.5754 (1)	0.16339 (9)	0.73955 (8)	3.44 (1)
O(2)	0.9369 (1)	0.18435 (8)	0.63884 (8)	3.34 (1)
C(3)	0.7861 (2)	0.1953 (1)	0.9057 (1)	2.94 (2)
C(2)	0.9828 (2)	0.3057 (1)	0.8715(1)	3.37 (2)
C(3)	0.9836 (2)	0.4435 (1)	0.7425 (1)	3.25 (2)
C(4)	0.7896 (2)	0.4282 (1)	0.6854 (1)	2.78 (2)
C(5)	0.5942(1)	0.4516 (1)	0.80569 (9)	2.65 (2)
C(6)	0.5923 (2)	0.2893 (1)	0.9597 (1)	2.73 (2)
C(7)	0.7710(1)	0.2337 (1)	0.7352(1)	2.81 (2)
C(8)	0.6005 (2)	0.3174 (1)	1.1084 (1)	3.07 (2)
C(9)	0.6074 (2)	0.6262 (1)	0.8134 (1)	2.93 (2)
C(10)	0.5261 (2)	0.2139 (2)	0.5904 (1)	4.59 (3)
C(11)	0.9727 (2)	0.0089 (1)	0.7020 (2)	4.66 (3)

corrections were based on ψ scans, with minimum relative transmission coefficient 0.948. Three standard reflections (500, 030, 003) showed only random fluctuation in intensity so no correction for decay was applied. Data from the two equivalent hemispheres were averaged, $R_{int} = 0.011$. Structure solution and refinement were identical to those for (1). Final R = 0.036 for 1815 observed data (0.038 for all 1942 unique data), wR = 0.058, and S = 3.685 for 183 variables. Maximum shift 0.11σ in the final cycle, max. residual density 0.21, min. $-0.13 \text{ e} \text{ Å}^{-3}$, and extinction coefficient $g = 3.01 (13) \times 10^{-5}$. A structural diagram of compound (2) is shown below while fractional coordinates are given in Table 3. Fig. 3 is a perspective drawing showing the atom numbering for title molecule (2), and Fig. 4 illustrates the unit cell. Bond distances, angles, and selected torsion angles for (2) are presented in Table 4.

Related literature. Single-bond distances (Å) C(1)— C(6) and C(4)—C(5) of 1,2,4,5,6,7,8,9-octachloro-10,10-dimethoxytricyclo[5.2.1.0^{2,6}]deca-4,8-dien-3-one 1.572 (3) and 1.573 (3) (Galesic, Matijasic & Bruvo, 1985); 3,4,5,6-tetrachloro-12,12-dimethoxy-9,10-bis-(methoxycarbonyl)-*exo,endo*-pentacyclo[6.2.1.1^{3,6}.0^{2,7}]dodeca-4,9-diene 1.550 (4) and 1.556 (3) (Battiste, Griggs, Sackett, Coxon & Steel, 1987); {9,10- η^2 :11 σ -3,4,5,6-tetrachloro-12,12-dimethoxy-9,10-bis(methoxycarbonyl)*exo,endo*-tetracyclo[6.2.1.1^{3,6}.0^{2,7}]dodeca-4,9-dien-11-yl{ η^5 -cyclopentadienyl)nickel(II) 1.546 (3) and 1.550 (3) (Battiste *et al.*, 1987); 1,2,3,4,7,7-hexachloro-5,6-bis(chloromethyl)bicyclo-[2.2.1]hept-2-ene [Alodan(hoechst)[®]] 1.568 (7) and

1.549 (7) (Kennard, Smith & Palm, 1981); are similar to those in the title compounds (1) and (2): C(1)— C(6) and C(4)—C(5) bond distances of 1.561 (3) and 1.555 (4), and 1.566 (1) and 1.564 (1), respectively. The bond angles C(1)—C(7)—C(4) (1) [90.9 (2)°] and (2) $[93.88 (8)^{\circ}]$ of the title compounds are similar to the analogous bond angles of 1,2,4,5,6,7,8,9octachloro-10,10-dimethoxytricyclo[5.2.1.0^{2,6}]deca-4,8-dien-3-one $[91.6(1)^{\circ}]$; 3,4,5,6-tetrachloro-12,12dimethoxy-9,10-bis(methoxycarbonyl)-exo,endopentacyclo[6.2.1.1^{3,6}.0^{2,7}]-dodeca-4,9-diene and {9,10- η^2 :11 σ -3,4,5,6-tetrachloro-12,12-dimethoxy-9,10-bis-(methoxycarbonyl)-exo,endo-tetracyclo[6.2.1.1^{3,6}.0^{2,7}]dodeca-4,9-dien-11-yl}(η^{5} -cyclopentadienyl)nickel(II) $[90.9 (2)^{\circ}$ and $90.7 (2)^{\circ}$ respectively]; 1,2,3,4,7,7hexachloro-5,6-bis(chloromethyl)bicyclo[2.2.1]hept-2-ene [Alodan(hoechst)[®]] [92·9 (4)°]. The C-C-C and O—C—O bridgehead angles of $90.9(2)^{\circ}$ for (1); $93.88 (8)^{\circ}$ for (2) and $113.4 (2)^{\circ}$ for (1); $109.94 (9)^{\circ}$ for (2) respectively, as well as the O(1)-C(7)-O(2)—C(11) and O(2)—C(7)—O(1)—C(10) torsion angles of 52.23 (34)° and 56.46 (30)° for (1) and $-68.69 (11)^{\circ}$ and $-60.08 (11)^{\circ}$ for (2) respectively are in accord with literature data (Galesic, Matijasic & Bruvo, 1985; Van Hemelrijk & Lenstra, 1981; Van Hemelrijk, Lenstra & Geise, 1981, 1982). Intramolecular C(10)…C(11) distance 3.332 (5) Å for (1) is similar to that of (2), 3.510(2) Å.

We thank the Louisiana Educational Quality Support Fund Grant #LEQSF(1987-90)-RD-A-5 for support of this research.

Fig. 3. ORTEP drawing (Johnson, 1965) of the molecule (2), representing heavy atoms as 50% probability ellipsoids and H atoms as circles of arbitrary radius.

Fig. 4. Stereoview of the unit cell of (2).

 Table 4. Bond distances (Å), angles (°), and selected torsion angles (°) for (2)

O(1)—C(7)	1.410 (1)	C(3)—C(4)	1.513 (2)
O(1) - C(10)	1.420 (1)	C(4) - C(5)	1.564 (1)
O(2) - C(7)	1.411 (1)	C(4) - C(7)	1.540 (1)
O(2) - C(11)	1.416 (1)	C(5) - C(6)	1.575 (1)
C(1) - C(2)	1.510 (1)	C(5) - C(9)	1.526 (1)
C(1) - C(6)	1.566 (1)	C(6)-C(8)	1.530 (2)
C(1) - C(7)	1.546 (1)	C(8) - C(9)	1.544 (1)
C(2)—C(3)	1.329 (1)		
$C(7) \rightarrow O(1) \rightarrow C(10)$	114.51 (7)	$C(6) \rightarrow C(5) \rightarrow C(9)$	118-16 (8)
C(7) = O(2) = C(11)	114.07(7)	C(1) - C(6) - C(5)	102.81 (6)
C(2) - C(1) - C(6)	107.16 (9)	C(1) - C(6) - C(8)	112.43(8)
C(2) - C(1) - C(0)	99.50 (7)	C(5) - C(6) - C(8)	117 59 (8)
C(6) - C(1) - C(7)	100.17(7)	O(1) - C(7) - O(2)	109.94 (9)
C(1) - C(2) - C(3)	107.49 (9)	O(1) - C(7) - C(1)	108.94 (6)
C(2) - C(3) - C(4)	108-19 (8)	O(1) - C(7) - C(4)	116.30 (8)
C(3) - C(4) - C(5)	106.94 (9)	O(2) - C(7) - C(1)	117.44(8)
C(3) - C(4) - C(7)	99.42 (7)	O(2) - C(7) - C(4)	109.81 (6)
C(5) - C(4) - C(7)	100.54 (6)	C(1) - C(7) - C(4)	93.88 (8)
C(4) - C(5) - C(6)	102.30(7)	C(6) - C(8) - C(9)	114.39 (9)
C(4) - C(5) - C(9)	111.53 (7)	C(5)-C(9)-C(8)	115.83 (8)
C(10)-O(1)-C(7)-O	(2) − 60·08 (11)	C(11)-O(2)-C(7)-O	(1) - 68-69 (11)
C(7) - C(1) - C(2) - C(2)	3) 34.32 (11)	C(7) - C(1) - C(6) - C(5)	-36.36(9)
C(1) - C(2) - C(3) - C(4)	4) $-0.81(12)$	C(7) - C(4) - C(5) - C(5)	(1) 164.32(/) 0.80(12)
C(4) - C(5) - C(6) - C(6)	$\begin{array}{ccc} 1 & -0.30 & (9) \\ 8' & -77.02 & (10) \end{array}$	C(9) - C(3) - C(6) - C(8)	5' = 117.83(9)
C(0) =	$9'_1 = 73.37(10)$		5, 11/05(9)
			

References

- AKHTAR, I. A., FRAY, G. I. & YARROW, J. M. (1968). J. Chem. Soc. (C), pp. 812–815.
- BATTISTE, M. A., GRIGGS, B. G. JR, SACKETT, D., COXON, J. M. & STEEL, P. J. (1987). J. Organomet. Chem. 330, 437–446.
- CROMER, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- CROMER, D. T. & WABER, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- FRENZ, B. A. & OKAYA, Y. (1980). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- GALESIC, N., MATIJASIC, I. & BRUVO, M. (1985). Acta Cryst. C41, 1662–1664.
- GASSMAN, P. G. & MARSHALL, J. L. (1968). Org. Synth. 48, 68-72.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- KENNARD, C. H. L., SMITH, G. & PALM, T. B. (1981). Acta Cryst. B37, 1953-1955.
- VAN HEMELRIJK, D. & LENSTRA, A. T. H. (1981). Cryst. Struct. Commun. 10, 603-612.
- VAN HEMELRIJK, D., LENSTRA, A. T. H. & GEISE, H. J. (1981). Cryst. Struct. Commun. 10, 1269–1276.
- VAN HEMELRIJK, D., LENSTRA, A. T. H. & GEISE, H. J. (1982). Acta Cryst. B38, 2760-2763.

Acta Cryst. (1991). C47, 209-211

Redetermination of the Structure of Friedelin

By Jean-Paul Declercq

Laboratoire de Chimie Physique et de Cristallographie, Université Catholique de Louvain, 1 place Louis Pasteur, B-1348 Louvain-la-Neuve, Belgium

LUC VAN PUYVELDE

Institut de Recherche Scientifique et Technologique, Curphametra, BP 227, Butare, Rwanda

NORBERT DE KIMPE* AND MILAN NAGY

Laboratory of Organic Chemistry, Faculty of Agricultural Sciences, State University of Gent, Coupure Links 653, B-900 Gent, Belgium

AND GEORGES VERHEGGE AND ROLAND DE VIERMAN

Laboratory of Organic Chemistry, Faculty of Sciences, State University of Gent, Krijgslaan 281, B-9000 Gent, Belgium

(Received 16 April 1990; accepted 27 June 1990)

Abstract. D:A-Friedooleanan-3-one, $C_{30}H_{50}O$, $M_r = 426.73$, orthorhombic, $P2_12_12_1$, a = 6.362 (2), b = 13.923 (2), c = 28.419 (5) Å, V = 2517 (1) Å³, Z = 4, $D_x = 1.13$ g cm⁻³, Cu K α , $\lambda = 1.5417$ Å, $\mu = 4.92$ cm⁻¹, F(000) = 952, T = 291 K, R = 0.047 for

3842 observed reflections. Friedelin was isolated for the first time from *Harungana madagascariensis* Lam. *ex* Poir (Clusiaceae). Recently, the crystal structure has been described [Mo, Winther & Scrimgeour (1989). *Acta Cryst.* B45, 261–270], but with relatively low precision (R = 0.133 for 2201 reflections). Our data are of much better quality: mean e.s.d.'s of bond distances and angles are 0.003 Å and 0.2° here, com-

© 1991 International Union of Crystallography

^{*} Research Director of the Belgian 'National Fund for Scientific Research'.